Success Key Test Series	SUCCESS KEY TEST SERIES X (English) (Unit test-4 Math-2 (Ch-7)) Mathematics Part - II-	SEAT NO:	DATE:			
			TIME: 1 hrs			
			MARKS: 20			

Q. 1 A) Choose the correct alternative.

1) Find the side of a cube of volume $1 \mathrm{~m}^{3}$.
a. 1 cm
b. 10 cm
c. 100 cm
d. 1000 cm
2) If $r=7 \mathrm{~cm}$, find the length of the arc when the corresponding central angle is 90°.
a. 11 cm
b. 7 cm
c. 4 cm
d. 22 cm
B) Solve the following questions. (Any one)
3) Prove, $A=\frac{1}{2} \mathrm{Cr}$, for a circle having radius, circumference and area r, C and A respectively.
4) Find the perimeter of each of the given sector.
(Give your answers in terms of π)

Q. 2 A) Complete the following Activities. (Any two)
5)

In figure, radius of circle is 3.4 cm and perimeter of sector $\mathrm{P}-\mathrm{ABC}$ is 12.8 cm . Find $\mathrm{A}(\mathrm{P}-\mathrm{ABC})$.
Given

$$
\begin{array}{ll}
: \text { Radius of circle } & =r
\end{array}=3.4 \mathrm{~cm}, ~=12.8 \mathrm{~cm}
$$

: Perimeter $=$ length of arc $+2 \times$ \qquad
$\therefore \quad$ Length of arc $=$ \qquad $-2 \times$ radius of circle
length of arc

$$
\begin{align*}
& =12.8-2 \times 3.4 \\
& = \tag{1}
\end{align*}
$$

We know that, area of sector $=\frac{\text { length of arc } \times \text { radius of circle }}{2}$

$$
\begin{aligned}
& \mathrm{A}(\mathrm{P}-\mathrm{ABC})= \\
&= \\
& \mathrm{cm}^{2}
\end{aligned}
$$

$A(P-A B C)$ is \qquad cm^{2}
2) In the figure, if A is the centre of the circle. $\angle \mathrm{PAR}=30^{\circ}, \mathrm{AP}=7.5$, find the area of the segment PQR $(\pi=3.14)$

The radius of the circle $(r)=A P=7.5 \mathrm{~m}(\operatorname{arc} \mathrm{PQR})=\angle \mathrm{PAR}=\theta=30^{\circ}$
Area of the segment $\mathrm{PQR}=\mathrm{r}^{2}$

$$
\begin{aligned}
& =r^{2}\left(\frac{\pi \theta}{360}-\frac{\sin \theta}{2}\right) \\
& =-2\left[\frac{\pi \times 30}{360}-\frac{\sin 30}{2}\right] \\
& =\left(\frac{15}{2}\right)^{2}\left(\frac{\pi}{12}-\frac{1}{4}\right) \\
& =\frac{225}{4} \times \overline{{ }^{2}}- \\
& =\frac{225 \times 0.14}{4 \times 12} \\
& =\overline{9.3 \times} \overline{\mathrm{cm}^{2}} \\
& =
\end{aligned}
$$

3) A tank of cylindrical shape has radius 2.8 m and its height 3.5 m . Complete the activity to find how many litres of water the tank will contain.

Capacity of water tank

$$
\begin{aligned}
& =\text { Volume of cylindrical tank } \\
& =\pi r^{2} \mathrm{~h} \\
& =\frac{22}{7} \times 2.8 \times 2.8 \times \ldots \\
& =\square \\
& =-\quad \mathrm{m}^{3} \\
& = \\
& =1000 \text { litre }
\end{aligned}
$$

B) Solve the following questions. (Any one)
1)

Radii of the top and the base of a frustum of a cone are 5 cm and 2 cm respectively. Its height is 9 cm . Find its volume. $(\pi=3.14)$
2) The area of a sector of a circle of 6 cm radius is $15 \pi \mathrm{sq} . \mathrm{cm}$. Find the measure of the arc and length of the arc corresponding to the sector.

1) Find the area of the shaded region. $(\pi=3.14, \sqrt{3}=1.73)$

Given: radius $(r)=12 \mathrm{~cm}$
Central angle $(\theta)=60^{\circ}$
To find: Area of shaded region

2) In the figure, $\mathrm{m} \angle \mathrm{POQ}=30^{\circ}$ and radius $\mathrm{OP}=12 \mathrm{~cm}$.

Find the following(Given $\pi=3.14$)
i. Area of sector O-PRQ
ii. Area of $\triangle O P Q$
iii. Area of segment $P R Q$

3)

As shown in the figure, a cylindrical glass contains water. A metal sphere of diameter 2 cm is immersed in it. Find the volume of the water.

Q. 4 Solve the following questions. (Any one)

1) In figure, A is the centre of the circle. $\angle A B C=45^{\circ}$ and $A C=7 \sqrt{2} \mathrm{~cm}$.

Find the area of segment BXC.

2) In the figure, seg $A B$ is a chord of a circle with centre P.

If $P A=8 \mathrm{~cm}$ and distance of chord $A B$ from the centre P is 4 cm , find the area of the shaded portion. $(\pi=3.14, \sqrt{3}=1.73)$

Q. $5 \quad$ Solve the following questions. (Any one)

1)

\qquad In the figure, a cylindrical wrapper of flat tablets is shown. The radius of a tablet is 7 mm and its thickness is 5 mm . How many such tablets are wrapped in the wrapper?
2) A cylinder of radius 12 cm contains water up to the height of 20 cm .

A spherical iron ball is dropped into the cylinder and thus the water level is raised by 6.75 cm .
Find the radius of the spherical iron ball.

